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1.1 Sample Quality Control

Please refer to Novogene’s QC report for methods of sample quality control.

1.2 Library Construction, Quality Control and Sequencing
Sampling 1 μg of genomic DNA, the sample is randomly fragmented into segments of approximately
350 bp using a Covaris ultrasonic disruptor to construct the library. The entire library preparation is
completed through steps including end repair, addition of A-tails, ligation of sequencing adapters,
purification, and PCR amplification. After library construction, the integrity of the library fragments
and the size of the inserted fragments are assessed using AATI analysis. If the insert size meets
expectations, the accurate concentration of the effective library is quantified using Q-PCR (effective
library concentration > 3 nM) to ensure the library quality. After the library passes the quality check,
different libraries are pooled according to their effective concentrations and target data output
requirements, and then subjected to PE150 sequencing.

2 Bioinformatics Analysis Pipeline
2.1 Preprocessing of sequencing results

Fastp (https://github.com/OpenGene/fastp) is used for preprocessing raw data from the Illumina
sequencing platform to obtain clean data for subsequent analysis. We will discard the paired reads in
the following situation: when either one read contains adapter contamination; when either one read
contains more than 10 percent uncertain nucleotides; when either one read contains more than 50
percent low quality nucleotides (base quality less than 5).

Considering the possibility of host contamination in samples, clean data needs to be blasted to the host
database to filter out reads that may come from host origin. Bowtie2 software
(http://bowtie-bio.sourceforge.net/bowtie2/index.shtml) is used by default, with the following
parameter settings: --end-to-end, --sensitive, -I 200, and -X 400 (Karlsson FH et al., 2012; Karlsson FH
et al., 2013; Scher JU et al., 2013).

2.2 Assembly of Metagenome

MEGAHIT software is used for assembly analysis of clean data, with assembly parameter settings:
--presets meta-large (--end-to-end, --sensitive, -I 200, -X 400) (Karlsson FH et al., 2013; Nielsen HB et
al., 2014), and scaftigs without N is obtained by breaking the resulted scaffolds from the N junction
(Qin J et al., 2010; Li D et al., 2015).

2.3 Gene prediction and abundance analysis

With the default parameters, MetaGeneMark (http://topaz.gatech.edu/GeneMark/) is used to perform
ORF prediction for scaftigs (>= 500 bp) of each sample (Karlsson FH et al., 2012; Mende DR et
al.,2012; Li J et al., 2014; Oh J et al., 2014; Qin N et al., 2014), and the information with a length less
than 100 nt in the prediction results is filtered out (Qin J et al., 2010; Zhu W et al., 2010; Nielsen HB et
al., 2014; Zeller G et al., 2014; Sunagawa S et al., 2015).



For the ORF prediction results, CD-HIT software (http://www.bioinformatics.org/cd-hit/) is used to
eliminate redundancy (Li W et al., 2006; Fu L et al., 2012) and obtain the non- redundant initial gene
catalogue (the nucleic acid sequences encoded by successive non- redundant genes are called genes)
(Zeller G et al., 2014), with parameter settings: -c 0.95,-G 0,-aS 0.9,-g 1,-d 0 (Li J et al., 2014; Qin N et
al., 2014).

Clean data of each sample is aligned to the initial gene catalogue by using Bowtie2 to calculate the
number of reads of the genes on each sample alignment, with parameter settings: --end-to-end,
--sensitive, -I 200, -x 400 (Qin J et al., 2010; Li J et al., 2014). Genes with reads <= 2 in each sample
are filtered out to finally determine the gene catalogue (Unigenes) for subsequent analysis (Zeller G et
al., 2014).

Based on the number of reads aligned and the length of gene, the abundance of each gene in each
sample is calculated by the following formula, in which r is the number of gene reads on alignment,
and L is the length of gene (Cotillard A et al., 2013; Buchfink B et al., 2015; Villar E et al., 2015):

Based on the abundance of each gene in the gene catalogue in each sample, basic information statistics,
core-pan gene analysis, correlation analysis between samples, and Venn diagram analysis of gene
number are performed.

2.4 Species annotation

DIAMOND software (https://github.com/bbuchfink/diamond/) (Buchfink B et al., 2015) is used for
alignment of unigenes sequences with Micro_NR database, which includes sequences from bacteria,
fungi, archaea, and viruses extracted from NCBI's NR database (https://www.ncbi.nlm.nih.gov/). The
alignment is performed useing the blastp algorithm with a parameter setting of 1e-5 (Karlsson FH et al.,
2013).

From the alignment results of each sequence, the one with evalue <= min. evalue *10 is selected. Since
each sequence may have multiple alignment results, LCA algorithm (applied to systematic taxonomy
of MEGAN software (https://en.wikipedia.org/wiki/Lowest_common_ancestor) is adopted to
determine the species annotation information of the sequence (Huson DH et al., 2011).

Out of the results of LCA annotation and gene abundance table, the abundance of each sample at each
taxonomy (kingdom, phylum, class, order, family, genus, or species) and the corresponding gene
abundance tables are acquired. The abundance of a species in a sample

is equal to the sum of the abundance of those genes annotated as that species (Karlsson FH et al., 2012;
Li J et al., 2014; Feng Q et al., 2015). The number of genes of a species in a sample is equal to the
number of genes whose abundance is non-zero among the genes annotated as that species.

On the basis of the abundance tables at each taxonomy level, Krona analysis (Ondov BD et al., 2011),
relative abundance overview, and abundance clustering heatmap are performed, combined with PCA
(R ade4 package) (Rao C R et al., 1964), PCoA (R ade4 package) ,and NMDS (R vegan package)
analysis of dimension reduction (Legendre P, 1998). Anosim analysis (R vegan package) is used to test



the differences between groups. MetaGenomeSeq and LEfSe analysis are used to search for species
differences between groups. MetaGenomeSeq analysis is used to perform permutation test between
groups on each taxonomy level and get a p-value. LEfSe software is used for LEfSe analysis (LDA
Score is 4 by default) (Segata N et al., 2011). Finally, Random forest analysis (R pROC and
randomForest packages) (Breiman L, 2001) is applied to select the species at species level by gradient
and build a RandomForest model. Important species are screened out by MeanDecreaseAccuracy and
MeanDecreaseGin, and then cross-validation (default 10-fold) is performed for each model and ROC
curves are drawn.

2.5 Annotations of common functional database

DIAMOND software (https://github.com/bbuchfink/diamond/) is used to align unigenes with those in
the functional database, with parameter settings: blastp, -e 1e-5 (Li J et al., 2014; Feng Q et al., 2015).
Functional databases include KEGG database (http://www.kegg.jp/kegg/) (Kanehisa M et al., 2006;
Kanehisa M et al., 2017), eggNOG database (http://eggnogdb.embl.de/#/app/home) (Jaime
Huerta-Cepas et al., 2016), CAZy database (http://www.cazy.org/)(Cantarel BL et al., 2009), VFDB
database (http://www.mgc.ac.cn/VFs/main.htm) and PHI database (http://www.phi-base.org/index.jsp).
From the alignment results of each sequence, the best blast hit results are selected for subsequent
analysis (Qin J et al., 2012; Li J et al., 2014; Qin N et al., 2014; Ba ckhed F et al., 2015).

According to the alignment results, the relative abundance at different functional levels is calculated
(the relative abundance at each functional level is equal to the sum of the relative abundance of genes
annotated as that functional level) (Karlsson FH et al., 2012; Li J et al., 2014).

The gene number table of each sample at each taxonomy level is derived from the result of functional
annotation and gene abundance table. The number of genes with a certain function in a sample is equal
to the number of genes whose abundance is non-zero among the genes annotated with this function.

Based on the abundance table at each taxonomy level, annotated genes statistics, relative abundance
overview, and abundance clustering heat map are carried out, combined with PCA and NMDS analysis
of dimension reduction, Anosim analysis of inter-/intra-group

differences on the basis of functional abundance, metabolic pathway comparative analysis, as well as
MetaGenomeSeq and LEfSe analysis on inter-group functional difference.

2.6 Annotations of resistance gene

Unigenes are aligned to the CARD database (https://card.mcmaster.ca/) (Marti nez JL et al., 2015)
using the Resistance Gene Identifier (RGI) software (Jia B et al., 2017) provided by the CARD
database (RGI built-in blastp, default evalue < 1e-30) (McArthur AG et al., 2013).

According to the RGI alignment result and unigenes abundance information, the relative abundance of
each ARO is calculated.



Based on the abundance of ARO, the abundance histogram, abundance clustering heat map, abundance
distribution circle map, ARO difference analysis between groups, resistance genes (unigenes annotated
as ARO) and species attribution analysis of resistance mechanism are carried out (some AROs with
long names are abbreviated as the first three words plus underlines.)

Mobile genetic elements (MGEs), unigenes were compared with the insertion sequence (isfinder),
integrall and plasmid databases, respectively, to obtain abundance information. The annotated
abundance information was further visualized, and the results of abundance histogram and relative
abundance heatmap were displayed.
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